• enago

The A bond-glycosidic bond is a covalent bond formed between a hydroxyl group attached to the an anomeric carbon atom of a one monosaccharide and any hydroxyl group on of another monosaccharide. Consequently the formation of a disaccharide. Disaccharides thus formed of by two identical D-series hexopyranose ring structures result in have 11 different isomers. Of these, In eight of isomers, the form a glycosidic linkage between C-1, C-2, C-3, C-4, or C-6 of any other pyranose residue in either the α - or β -anomeric configuration. [e.g., $-\alpha$ -D- $(1\rightarrow 2)$ linkage, and β -D- α -D- $(1\rightarrow 3)$ linkages, etc.], where α and β indicate denote the anomeric configuration with at C-1. The three other three isomers are ereated formed by acetyl formation between the two both the C-1 atoms by through the glycosidic oxygen atom in the the α,α_i ; the α,β_i ; or the β,β configuration. A similar series of 11 isomers results is formed if the two identical residues of hexopyranose are belong to the L-series. -The number of isomers can be increased by including furanose forms. However, the number of isomers formed in the case of with non-identical monosaccharides, the number of isomers formed is morehigher, as because the carbohydrate residues can occupy the first or the second position, i.e., the disaccharide could be either-reducing or non-reducing in nature. The aAddition of a carbohydrate residue brings a great increases the number of in possible isomers.

Comment [A1]: As in the case of *ionic bond*, *covalent bond*, *etc.*, a chemical bond is normally presented with the type of bond mentioned as an adjective.

Comment [A2]: The definite article "the" has been used here to denote specificity.

Comment [A3]: In a list, if the same article is applicable to each item, then the article can be used only at the start of the list.